Learning Where to Look: Data-Driven Viewpoint Set Selection for 3D Scenes

نویسندگان

  • Kyle Genova
  • Manolis Savva
  • Angel X. Chang
  • Thomas A. Funkhouser
چکیده

The use of rendered images, whether from completely synthetic datasets or from 3D reconstructions, is increasingly prevalent in vision tasks. However, little attention has been given to how the selection of viewpoints affects the performance of rendered training sets. In this paper, we propose a data-driven approach to view set selection. Given a set of example images, we extract statistics describing their contents and generate a set of views matching the distribution of those statistics. Motivated by semantic segmentation tasks, we model the spatial distribution of each semantic object category within an image view volume. We provide a search algorithm that generates a sampling of likely candidate views according to the example distribution, and a set selection algorithm that chooses a subset of the candidates that jointly cover the example distribution. Results of experiments with these algorithms on SUNCG indicate that they are indeed able to produce view distributions similar to an example set from NYUDv2 according to the earth mover’s distance. Furthermore, the selected views improve performance on semantic segmentation compared to alternative view selection algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semantics-Driven Approach for Automatic Selection of Best Views of 3D Shapes

We introduce a new framework for the automatic selection of the best views of 3D models. The approach is based on the assumption that models belonging to the same class of shapes share the same salient features that discriminate them from the models of other classes. The main issue is learning these features. We propose a datadriven approach where the best view selection problem is formulated a...

متن کامل

Multi-View Priors for Learning Detectors from Sparse Viewpoint Data

While the majority of today’s object class models provide only 2D bounding boxes, far richer output hypotheses are desirable including viewpoint, fine-grained category, and 3D geometry estimate. However, models trained to provide richer output require larger amounts of training data, preferably well covering the relevant aspects such as viewpoint and fine-grained categories. In this paper, we a...

متن کامل

Learning a 3D descriptor for cross-source point cloud registration from synthetic data

As the development of 3D sensors, registration of 3D data (e.g. point cloud) coming from different kind of sensor is dispensable and shows great demanding. However, point cloud registration between different sensors is challenging because of the variant of density, missing data, different viewpoint, noise and outliers, and geometric transformation. In this paper, we propose a method to learn a ...

متن کامل

3D Hand Pose Detection in Egocentric RGB-D Images

We focus on the task of everyday hand pose estimation from egocentric viewpoints. For this task, we show that depth sensors are particularly informative for extracting near-field interactions of the camera wearer with his/her environment. Despite the recent advances in full-body pose estimation using Kinect-like sensors, reliable monocular hand pose estimation in RGB-D images is still an unsolv...

متن کامل

Data-driven approaches for interactive appearance editing

This thesis proposes several techniques for interactive editing of digital content and fast rendering of virtual 3D scenes. Editing of digital content such as images or 3D scenes is difficult, requires artistic talent and technical expertise. To alleviate these difficulties, we exploit data-driven approaches that use the easily accessible Internet data (e. g., images, videos, materials) to deve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1704.02393  شماره 

صفحات  -

تاریخ انتشار 2017